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A method for computing the numerical solution of Vlasov type equations on massively par-
allel computers is presented. In contrast with Particle In Cell methods which are known to
be noisy, the method is based on a semi-Lagrangian algorithm that approaches the Vlasov
equation on a grid of phase space. As this kind of method requires a huge computational
effort, the simulations are carried out on parallel machines. To that purpose, we present
a local cubic splines interpolation method based on a domain decomposition, e.g. devoted
to a processor. Hermite boundary conditions between the domains, using ad hoc recon-
struction of the derivatives, provide a good approximation of the global solution. The
method is applied on various physical configurations which show the ability of the numer-
ical scheme.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

To model the evolution of charged particles at the kinetic level, the Vlasov equation is often studied, in particular in the
context of collisionless plasmas or space charge dominated beams. The coupling with Maxwell or Poisson equations has to be
taken into account to compute self-consistent forces. The unknown f is a distribution function of particles in phase space
which depends on the time t P 0, the physical space x 2 Rd and the velocity v 2 Rd, where d is the dimension d ¼ 1;2;3.
The Vlasov equation is a nonlinear partial differential equation, whose analytical solution is available in a few simplified lin-
ear cases, but the nonlinear regime, including the most interesting physical phenomena, must be investigated numerically.

In this context, Particle In Cell (PIC) codes have been considered up to now as the most effective approach to simulate
plasmas in the framework of the kinetic theory. Indeed, high dimensional simulations can be performed using this approach
with a relatively small computational cost (see [3,6,20]). However, it is known that this method suffers from some serious
drawbacks stemming from statistical numerical noise particularly when a detailed structure of the distribution is needed
(when particles in the tail of the distribution function play an important role in the investigated physics, or when the influ-
ence of density fluctuations which are at the origin of instabilities are studied).

On the other hand, another approach that numerically solves the Vlasov equation is the Eulerian method; this kind of
method uses a computational grid of the whole phase space and the time integration of the distribution function is
carried out at each computational grid point. Various techniques have been investigated and we refer the reader to
[10–12,15,16,23,26,27,30,32,33] for plasma physics applications, and to [1,31] for other applications. Among these Eulerian
methods, the semi-Lagrangian method consists in computing directly the distribution function on a Cartesian grid of the
phase space, by integrating the characteristic curves backward at each time step and interpolating the value at the feet of
. All rights reserved.
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the characteristics by some interpolation techniques (Lagrange, Hermite or cubic splines for example). We refer the reader to
[30] for more details on the semi-Lagrangian method and to [12] for a comparison of Eulerian solvers dedicated to the Vlasov
equation.

Eulerian methods have proven their efficiency on uniform meshes in two-dimensional phase space. However when
higher dimensional problems need to be solved, as these methods cover the whole phase space with grid points, the memory
storage and computation time rapidly increase since a minimum of points are required in each direction to represent the
physics correctly. To overcome this problem, some efficient parallelized versions of the code have been implemented to sim-
ulate high dimensional problems. For example, in [7], a time splitting procedure enables the authors to parallelize the algo-
rithm, but a global transpose between each split step induces an excessive communication cost when a large number of
processors was used (see [7,14]). Apart from this transpose, that can be overlapped with computations in favorable cases,
there is no communication between processors. However, when heterogeneous grids and several hundreds or more proces-
sors are targeted (see [17,21]), a global transpose involves a huge amount of data being transfered and this can become very
inefficient because of intense network traffic. For these reasons, we develop in this paper a local spline interpolation tech-
nique to solve Vlasov type equations which enables the efficient use of a large number of processors, and consequently to
decrease the runtimes.

The numerical method is based on the semi-Lagrangian approach by using the cubic spline interpolation operator. In or-
der to validate the method, we have designed the parallel software LOSS (LOcal Splines Simulator). Even if cubic spline inter-
polation seems to be a good compromise between accuracy (small diffusivity) and simplicity, it does not provide the locality
of the reconstruction since all the values of the distribution function are used for the reconstruction in each cell. To overcome
this problem of global dependency, we decompose the phase space domain into patches, each patch being devoted to one
processor. One patch computes its own local cubic spline coefficients by solving reduced linear systems; Hermite boundary
conditions are imposed at the boundary of the patches to reconstruct a smooth global numerical solution and the needed
derivative are computed in such a way that they are close to those given by the global spline interpolant. Hence this new
interpolation method benefits from the advantages of the cubic splines approach yielding almost the same solution with
the benefit of more efficient parallelization.

In fact, our strategy consists in getting a parallel version of the code, the results of which are as close as possible to the
results of the sequential version. Even if the methodology remains slightly different from the sequential case (essentially due
to local solutions of the cubic spline coefficients versus global solution), our main efforts consist in recovering in the best
possible way the global solution. Thanks to an adapted treatment of the Hermite boundary conditions, the obtained numer-
ical results are then in a good agreement with those obtained with the sequential version of the code. But the numerical
method introduces data-processing problems since some communications between processors have to be managed in a suit-
able way; indeed, as particles can leave the subdomain, their information must be forwarded to the appropriate processor
that controls the subdomain in which the particles now reside. Such interprocessor communications would involve a rela-
tively large amount of data exchange, but a condition on the time step allows us to control the shifts so that the communi-
cations are only done between adjacent processors. Hence, this communication scheme enables us to obtain competitive
results from a scalability point of view. Let us mention that even if a uniform grid is used here, the methodology could be
extended to sets of lines which are not equally spaced (adaptive meshes for example).

Hence, this methodology enables to perform high dimensional Vlasov simulations on massively parallel computers, with-
out degradation of the numerical results compared to the standard solvers. More precisely, to simulate realistic physics prob-
lems, since a large number of grid points is required, Eulerian methods become very costly. Using this approach, the data
structure is efficiently decomposed into a large number of processors so that the memory requirements and computational
cost can be handled.

The paper is organized as follows: first, we recall the main steps of the semi-Lagrangian method applied to the Vlasov
equation. Next, we propose the Hermite spline interpolation on patches before illustrating the efficiency of the method
by presenting several numerical and performance results.

2. The Vlasov equation and the semi-Lagrangian method

The evolution of the particle distribution function f ðt; x;vÞ in phase space, where ðx;vÞ 2 Rd � Rd with d ¼ 1;2;3 is the
phase space position and t the time, is given by the following Vlasov equation which is written in dimensionless units
@f
@t
þ v � rxf þ Fðt; x; vÞ � rv f ¼ 0; ð2:1Þ
where the force field Fðt; x;vÞ can be coupled to the distribution function f through the Maxwell or Poisson equations. This
nonlinear system features conservation properties that should be maintained as accurately as possible by the numerical
scheme: the mass, momentum and total energy, together with the Lp norms (1 6 p 6 þ1) are preserved in time.

On the other hand, we can define the characteristic curves of the Vlasov Eq. (2.1) as the solutions of the following first
order differential system
dX
dt ðt; s; x;vÞ ¼ Vðt; s; x;vÞ;
dV
dt ðt; s; x;vÞ ¼ Fðt;Xðt; s; x; vÞ; Vðt; s; x;vÞÞ;

(
ð2:2Þ
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with the initial conditions
Xðs; s; x;vÞ ¼ x; Vðs; s; x; vÞ ¼ v:
We denote by ðXðt; s; x;vÞ;Vðt; s; x;vÞÞ the position in phase space at the time t, of a particle which was in ðx;vÞ at time s. The
functions t ! ðXðt; s; x;vÞ;Vðt; s; x;vÞÞ are the characteristic curves solution of (2.2). Then, the solution of the Vlasov Eq. (2.1)
is given by
f ðt; x;vÞ ¼ f ðs;Xðs; t; x;vÞ; Vðs; t; x;vÞÞ ð2:3Þ
¼ f0ðXð0; t; x; vÞ;Vð0; t; x;vÞÞ; ðx; vÞ 2 Rd � Rd; t P 0; ð2:4Þ
where f0 is a given initial condition of the Vlasov equation. This equality means that the distribution function f is constant
along the characteristic curves which is the basis of the semi-Lagrangian method. Replacing s by tn and t by tnþ1 in (2.3), and
denoting Xn ¼ Xðtn; tnþ1; x;vÞ and Vn ¼ Vðtn; tnþ1; x;vÞ we have
f ðtnþ1; x;vÞ ¼ f ðtn;Xn;VnÞ:
For each point of the phase space grid ðx;vÞ, the distribution function is updated thanks to the two following steps

1. Find the starting point of the characteristic curves ending at ðx; vÞ, i.e. Xn ¼ Xðtn; tnþ1; x;vÞ and Vn ¼ Vðtn; tnþ1; x;vÞ by solv-
ing (2.2).

2. Compute f ðtn;Xn;VnÞ by interpolation, f being known only at mesh points at time tn.

As discussed in [30], step 1 must be performed carefully by introducing a time discretization of (2.2). But when a splitting
procedure can be adopted, the resolution of step 1 becomes straightforward since the advection field may not depend on the
variable to be advected.

3. The local spline interpolation

In this section, we present our interpolation technique based on a cubic spline method (see [4,19,30]). Even if the cubic
spline approach is quite standard for solving Vlasov equations, it remains a global method since it requires the values of the
distribution function on the whole domain or on big two-dimensional domains for two-dimensional advections, which is an
inconvenient from a parallelization point of view. Our approach avoids this globality. Indeed, we decompose the phase space
into several patches, each patch being devoted to one processor. The strategy is based on adapted boundary conditions which
allow a C1 reconstructed solution on the global phase space domain even on the patches boundaries.

We first present the interpolation on one patch in an unidimensional context before focusing on the two-dimensional
case.

3.1. The local spline interpolation in one dimension

Let us consider a function f which is defined on a global domain ½xmin; xmax� � R. This domain is decomposed into several
subdomains called generically ½x0; xN�; each subdomain will be devoted to a processor. In the following, we will use the nota-
tion xi ¼ x0 þ ih, where h is the mesh size: h ¼ ðxN � x0Þ=ðN þ 1Þ.

Let us now restrict the study of f : x#f ðxÞ on an interval ½x0; xN�, N 2 N, where x0 and xN are to be chosen, according to the
domain decomposition. The projection s of f onto the cubic spline basis reads
f ðxÞ ’ sðxÞ ¼
XNþ1

m¼�1

gmBmðxÞ;
where Bm is the cubic B-spline
BmðxÞ ¼
1

6h3

ðx� xm�2Þ3 if xm�2 6 x 6 xm�1;

h3 þ 3h2ðx� xm�1Þ þ 3hðx� xm�1Þ2

�3ðx� xm�1Þ3 if xm�1 6 x 6 xm;

h3 þ 3h2ðxmþ1 � xÞ þ 3hðxmþ1 � xÞ2

�3ðxmþ1 � xÞ3 if xm 6 x 6 xmþ1;

ðxmþ2 � xÞ3 if xmþ1 6 x 6 xmþ2;

0 otherwise:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3:1Þ
Let us remark that f and s coincide when f is a polynomial of degree less than 3 for example. The interpolating spline s is
uniquely determined by ðN þ 1Þ interpolating conditions
f ðxiÞ ¼ sðxiÞ 8i ¼ 0; . . . ;N; ð3:2Þ
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and the Hermite boundary conditions at both ends of the interval in order to obtain a C1 global approximation
f 0ðx0Þ ¼ s0ðx0Þ; f 0ðxNÞ ¼ s0ðxNÞ: ð3:3Þ
The only cubic B-spline not vanishing at point xi are Bi�1ðxiÞ ¼ 1=6 and BiðxiÞ ¼ 2=3. Hence (3.2) yields
f ðxiÞ ¼
1
6
gi�1 þ

2
3
gi þ

1
6
giþ1; i ¼ 0; . . . ;N: ð3:4Þ
On the other hand, we have B0i�1ðxiÞ ¼ �1=ð2hÞ, and B0ðxiÞ ¼ 0. Thus the Hermite boundary conditions (3.3) become
f 0ðx0Þ ¼ s0ðx0Þ ¼ �1=ð2hÞg�1 þ 1=ð2hÞg1; ð3:5Þ
and
f 0ðxNÞ ¼ s0ðxNÞ ¼ �1=ð2hÞgN�1 þ 1=ð2hÞgNþ1:
Finally, g ¼ ðg�1; . . .gNþ1Þ
T is the solution of the ðN þ 3Þ � ðN þ 3Þ system Ag ¼ F, where F is the following vector and
F ¼ ½f 0ðx0Þ; f ðx0Þ; . . . ; f ðxNÞ; f 0ðxNÞ�T : ð3:6Þ
and A denotes the following matrix
A ¼ 1
6

�3=h 0 3=h 0 � � � 0

1 4 1 0 ..
.

0 1 4 1 . .
. ..

.

..

. . .
. . .

. . .
. . .

.
0

..

.
0 1 4 1

0 0 0 �3=h 0 3=h

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð3:7Þ
Let us precise that f 0 is generally not known, and from a numerical point of view, the derivative of f has to be approximated
adequately. We will focus on this in the sequel of the paper.

Solution of the linear system Ag ¼ F
The matrix A of the linear system has a special structure. Its LU decomposition is of the following form
L ¼

1 0 0 � � � � � � 0

�h=3 1 0 . .
. ..

.

0 l1 1 . .
. ..

.

0 0 . .
. . .

.
0 ..

.

..

. . .
. . .

.
lN 1 0

0 � � � 0 �ð3lNÞ=h ð3lNþ1Þ=h 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

and
U ¼ 1
6

�3=h 0 3=h 0 � � � 0

0 d1 2 0 ..
.

0 0 d2 1 . .
. ..

.

0 0 . .
. . .

. . .
.

0
..
. . .

. . .
. . .

.
dNþ1 1

0 � � � 0 0 0 ð3dNþ2Þ=h

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

where li and di can be computed from the following relations
d1 ¼ 4; l1 ¼ 1=4; d2 ¼ 4� 2l1 ¼ 7=2;
from i ¼ 2;N
li ¼ 1=di;

diþ1 ¼ 4� li;
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and
lNþ1 ¼
1

dNdNþ1
;

dNþ2 ¼ 1� lNþ1:
The LU decomposition of A can then be computed once for all. At each time step, a spline interpolant needs to be computed
solving LUg ¼ F in two steps: the solution of Lu ¼ F, and then, the solution of Lg ¼ u.

3.2. The local spline interpolation in two dimensions

In a two-dimensional space, f is projected on a cubic spline basis 8ðx; yÞ 2 ½x0; xNx � � ½y0; yNy
� as follows:
f ðx; yÞ ’ sðx; yÞ ¼
XNxþ1

m¼�1

XNyþ1

b¼�1

gm;bBmðxÞBbðyÞ: ð3:8Þ
The same notations as in the previous section are used and we have to compute the coefficients gm;b. To that purpose, we first
solve the Ny þ 1 following systems
sðx; yjÞ ¼
XNxþ1

m¼�1

cmðyjÞBmðxÞ 8j ¼ 0; . . . ;Ny; ð3:9Þ
where
cmðyjÞ ¼ ½c�1ðyjÞ; c0ðyjÞ; . . . ; cmðyjÞ; . . . ; cNx
ðyjÞ; cNxþ1ðyjÞ�

T
:

Each of the Ny þ 1 systems (3.9) satisfies the Nx þ 1 interpolation conditions (at fixed j)
f ðxi; yjÞ ¼ sðxi; yjÞ; i ¼ 0; . . . ;Nx;
and the Hermite boundary conditions in the x-direction
@f
@x
ðx0; yjÞ ¼

@s
@x
ðx0; yjÞ;

@f
@x
ðxNx ; yjÞ ¼

@s
@x
ðxNx ; yjÞ:
We have denoted by
cmðyjÞ ¼
XNyþ1

b¼�1

gm;bBbðyjÞ: ð3:10Þ
We have been brought to solve Ny þ 1 linear systems AcmðyjÞ ¼ FðyjÞ, one for each value of j, involving the ðNx þ 3Þ � ðNx þ 3Þ
matrix (3.7) and a ðNx þ 3Þ vector similar to (3.6) evaluated in yj. Following the same procedure used previously (via the LU
decomposition), we then obtain the ðNx þ 3Þ vector of unknown cmðyjÞ, for j ¼ 0; . . . ;Ny
cmðyjÞ ¼ ½c�1ðyjÞ; c0ðyjÞ; . . . ; cmðyjÞ; . . . ; cNx
ðyjÞ; cNxþ1ðyjÞ�

T
:

The second step consists in the solution for each m ¼ �1; ::;Nx þ 1 of a one-dimensional problem given by (3.10). However,
the left hand side of this system is only known for values of yj, j ¼ 0; . . . ;Ny (i.e. it is a vector of Ny þ 1 components) whereas
the right hand side is a ðNy þ 3Þ vector. Some boundary conditions are necessary to close the system. Hermite boundary con-
ditions are imposed for the first and last component of the vector (which corresponds to j ¼ �1 and j ¼ Ny), that is to say, we
have to compute c0mðy0Þ and c0mðyNy

Þ, 8m ¼ �1; . . . ;Nx þ 1. To achieve this task, we solve two systems: we first take the deriv-
ative of (3.10) with respect to the y variable, and then evaluate it in yj ¼ y0 and yj ¼ yNy

. The Hermite boundary conditions
have to be adapted to this particular case. Consequently, we have to solve the two following systems (associated to j ¼ 0 and
j ¼ Ny): Ac0mðyjÞ ¼ @yf ðx; yjÞ, where A is the matrix (3.7),
c0mðyjÞ ¼ ½c0�1ðyjÞ; . . . ; c0mðyjÞ; . . . ; c0Nxþ1ðyjÞ�
T
;

and the right hand side writes
@yf ðx; yjÞ ¼ ½@xyf ðx0; yjÞ; @yf ðx0; yjÞ; . . . ; @yf ðxi; yjÞ; . . . ; @yf ðxNx ; yjÞ; @xyf ðxNx ; yjÞ�
T
:

Once we have computed c0mðy0Þ and c0mðyNy
Þ for all m ¼ �1; . . . ;Nx þ 1, we solve the system (3.10) which writes here

Agm;b ¼ Cmb. The matrix A is given by (3.7) and the right hand side Cmb reads
Cmb ¼ ½c0mðy0Þ; cmðy0; . . . ; cmðyNy
Þ; c0mðyNy

Þ�T ;
for each value of m ¼ �1; . . . ;Nx þ 1.
Once the spline coefficients gm;b have been computed for all m and b, the value of f at the origin of the characteristics

ðXn;VnÞ (determined following the semi-Lagrangian method described in Section 2) is taken to be the value of the spline
sðXn;VnÞ.
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If ðXn;VnÞ belongs to ½xi; xiþ1� � ½yj; yjþ1�, the approximation of the function f ðXn;VnÞ is given by
sðXn;VnÞ ¼
Xiþ2

m¼i�1

Xjþ2

b¼j�1

gm;bBmðXnÞBbðVnÞ
 !

;

where Bm and Bb are computed by (3.1). To get sðXn;VnÞ for all mesh points, it requires OðNxNyÞ floating-points operations.
In summary, we have to solve
ðNy þ 1Þ systems of size ðNx þ 3Þ � ðNx þ 3Þ ðto get cmðyjÞ 8j ¼ 0; . . . ;NyÞ;
2 systems of size ðNx þ 3Þ � ðNx þ 3Þ ðto get c0mðy0Þ and c0mðyNy

ÞÞ;
ðNx þ 3Þ systems of size ðNy þ 3Þ � ðNy þ 3Þ ðto getgm;bÞ:
From a computational cost point of view, the solution of a linear system of size Nx using the LU decomposition needs OðNxÞ
operations. Such a solution has to be done Ny times for the x-direction; the same is true for the y-direction. Finally, the two-
dimensional interpolation of Nx � Ny points leads to OðNxNyÞ operations.

3.3. Towards an efficient parallelization

In order to get accurate numerical simulations, one has to take care of boundary conditions for each local LU solve. Indeed,
our strategy consists in being as close as possible to the corresponding sequential version. Hence, from a decomposition of
the global domain into several patches, each processor being devoted to a patch, one wants that our local solution of cubic
spline coefficients recovers in the best way a usual solution on the global domain. To that purpose, some efforts have to be
done to approximate the derivatives of f in a particular way with respect to x and y. The points where derivatives must be
computed are shared between two processors since x0 and xN are both beginning and end of subdomains (xN of the target
processor corresponds to x0 of the adjacent processor). Hence, these derivatives of f join adjacent subdomains and play
an important role in the quality of the numerical results (see Fig. 4 in Section 5).

Different ways have been explored to obtain the derivatives: finite differences of different orders (centered and uncen-
tered), an ad-hoc cubic spline approximation. In order to reconstruct a smooth approximation (let’s say C1 on the global do-
main), the cubic spline approximation has been chosen. Indeed, we remark that even in regions where f is smooth enough, a
finite differences approximation remains quite different from a cubic spline approximation given by (3.5). Hence, as we want
to reconstruct the distribution function via a cubic spline approximation, the first line of the linear system the matrix of
which is given by (3.7) can introduce some numerical errors that propagate into the rest of the system; in the numerical
experimentations we have performed, the final results are damaged, especially when one observes the mass conservation.
Indeed, the finite differences approximation leads to some variations of the mass conservation which is an inconvenient
for the long time behaviour of the numerical solution. Moreover, when uncentered finite differences are used, unsymmetry
is imposed at the interface of the subdomains leading to unstable results for the two-stream instability test case for example
(see 5.1.3). On the contrary, the approximation of the derivatives using cubic splines enables us to obtain a robust code with
a relatively small number of discretization points.

By constructing an approximation of the derivatives using the cubic spline coefficients and the equalities (3.4) and (3.5),
we manage to overcome this kind of error (see Fig. 4(b) in Section 5). Moreover, the final global reconstructed numerical
solution is consistent with a numerical solution which is computed through a sequential solution. Let us explain it in the
following in the one-dimensional case (the multi-dimensional case can be deduced straightforwardly). First, relations
(3.5) and (3.4) enable us to write
s0ðxiÞ ¼
1

2h
ðgiþ1 � gi�1Þ;

¼ 1
2h

3
2

fiþ1 �
1
4
gi �

1
4
giþ2 �

3
2

fi�1 þ
1
4
gi�2 þ

1
4
gi

� �
;

¼ 3
4h
ðfiþ1 � fi�1Þ þ

1
8h
ðgi�2 � giþ2Þ; ð3:11Þ
to obtain the following equality
s0ðxiÞ ¼
3

4h
ðfiþ1 � fi�1Þ �

1
4
ðs0ðxi�1Þ þ s0ðxiþ1ÞÞ: ð3:12Þ
If we inject (3.11) in (3.12) to compute s0ðxi�1Þ, we obtain
s0ðxiÞ ¼
3

4h
ðfiþ1 � fi�1Þ �

1
4

3
4h
ðfiþ2 � fi�2Þ þ

1
8h
ðgi�3 � giþ1 þ gi�1 � giþ3Þ

� �
;

¼ 3
4h
ðfiþ1 � fi�1Þ �

1
4

3
4h
ðfiþ2 � fi�2Þ

� �
� 1

16
ð2s0ðxiÞ þ s0ðxi�2Þ þ s0ðxiþ2ÞÞ;
then we get another expression for the derivative of s
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s0ðxiÞ ¼
6

7h
ðfiþ1 � fi�1Þ �

3
14h
ðfiþ2 � fi�2Þ þ

1
14
ðs0ðxiþ2Þ � s0ðxi�2ÞÞ: ð3:13Þ
Thanks to (3.13), the evaluation of s0ðxiþ2Þ and s0ðxi�2Þ leads to the following new approximation of s0ðxiÞ
as0ðxiÞ ¼ 6
7h ðfiþ1 � fi�1Þ � 3

14h ðfiþ2 � fi�2Þ þ 6
98h ðfiþ3 � fiþ1 þ fi�1 � fi�3Þ

� 3
142h
ðfiþ4 � fi�4Þ þ 1

142 ðs0ðxiþ4Þ � s0ðxi�4ÞÞ:
ð3:14Þ
with a ¼ ð1� 2=142Þ. A last iteration allows us to obtain a high order approximation of the derivative of s
as0ðxiÞ ¼
Xj¼8

j¼�8

xjfiþj þ
1

a142 ðs
0ðxiþ8Þ þ s0ðxi�8ÞÞ þ

2
a142 s0ðxiÞ;
to obtain
1� 2

142 �
2

ð1� 2=142Þ142

 !
s0ðxiÞ ¼

Xj¼8

j¼�8

xjfiþj þ
1

a142 ðs
0ðxiþ8Þ þ s0ðxi�8ÞÞ; ð3:15Þ
where the derivatives s0ðxiþ8Þ and s0ðxi�8Þ are evaluated thanks to a finite differences approximation of order 4. For example,
s0ðxiþ8Þ is approximated by
s0ðxiþ8Þ ¼ ð�f ðxiþ10Þ þ 8f ðxiþ9Þ � 8f ðxiþ7Þ þ f ðxiþ6ÞÞ=ð12hÞ
where h is the discretization step. Even if this choice does introduce some error in the final evaluation of s0ðxiÞ, this error
becomes smaller as the number of terms used becomes higher because of the small coefficient it is multiplied by. The final
approximation of s0ðxiÞ then reads
s0ðxiÞ ¼
Xj¼10

j¼�10

~xjfiþj;

¼
Xj¼�1

j¼�10

~x�j fiþj þ
Xj¼10

j¼1

~xþj fiþj; ð3:16Þ
since the coefficient ~x0 is null here. Let us note that x�j and xþj are computed once for all. More iterations could also be done,
but formula (3.16) gives satisfying results.

The coefficients ~xj; j ¼ �10; . . . ;10 are summarized in Table 1. The ~xþj coefficients are given from the following relation:
~xþj ¼ � ~x�j .

4. Parallelization of the computations

In order to perform a parallelization of the interpolation step, data and computation have to be distributed onto proces-
sors. A classical technique of domain decomposition is used here to split the phase space into subdomains. Thus, a single
processor works on local data and shares information located on the borders of its subdomain with adjacent processors.
The set of values exchanged with the eight processors in the neighborhood of a given processor is named the ghost area
(at the west, north-west, north, north-east, east, south-east, south and south-west). This area is needed because each pro-
cessor has to know information belonging to others, in order to build the right hand side matrix of Section 3.2. Values of
function f and some kind of derivatives are stored in the ghost zone in order to manage this step. From a parallel perfor-
mance point of view, the number of values transmitted between processors must be minimal. So the ghost zone should
be chosen as small as possible.

Indeed, on the patch, only points ðxi; yjÞ for i ¼ 0; . . . ;Nx � 1 and j ¼ 0; . . . ;Ny � 1 are known, and the interpolation step
requires the knowledge of values on the patches borders; moreover we have to evaluate the derivative in ðx0; yjÞ and
ðxNx ; yjÞ, for all j, ðxi; y0Þ and ðxi; yNy

Þ for all i, which requires (see the previous section) a linear combination of 21 points.
The knowledge of these points enables us to build and solve the LU systems, and to interpolate on ½x0; xNx � � ½y0; yNy

�. But
we have to take into account the advected points that come out of the targeted patch. As mentioned in the Section 1, we
impose a restriction on the time step to enforce the displacement to be lower than the cell size. Hence, the interpolation area
ents for the approximation of the derivatives.

~x��9
~x��8

~x��7 ~x��6

09755E�5 �1.771447804E�5 7.971515119E�5 �3.011461267E�4 1.113797807E�3
~x��4

~x��3
~x��2

~x��1

187862E�3 0.01546473933 �0.05771376946 0.2153903385 �0.8038475846
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becomes ½x0 � Dx; xNx þ Dx� � ½y0 � Dy; yNy
þ Dy� (where Dx and Dy denote the discretization steps) and additional cubic

spline coefficients have to be computed.
To that purpose, the solution of the linear systems described in Section 3.2 takes into account the following augmented

right hand side matrix (the derivatives are approximated thanks to (3.16))
f ð�1;�1Þ @yf ð�1;0Þ f ð�1;0Þ � � � @yf ð�1;NyÞ f ð�1;Ny þ 1Þ
@xf ð0;�1Þ @2

xyf ð0;0Þ @xf ð0; 0Þ � � � @2
xyf ð0;NyÞ @xf ð0;Ny þ 1Þ

f ð0;�1Þ @yf ð0;0Þ f ð0;0Þ � � � @yf ð0;NyÞ f ð0;Ny þ 1Þ
..
. ..

. . .
. . .

. ..
. ..

.

f ðNx;�1Þ @yf ðNx;0Þ f ðNx;0Þ � � � @yf ðNx;NyÞ f ðNx;Ny þ 1Þ
@xf ðNx;�1Þ @2

xyf ðNx; 0Þ @xf ðNx;0Þ � � � @2
xyf ðNx;NyÞ @xf ðNx;Ny þ 1Þ

f ðNx þ 1;�1Þ @yf ðNx þ 1; 0Þ f ðNx þ 1;0Þ � � � @yf ðNx þ 1;NyÞ f ðNx þ 1;Ny þ 1Þ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð4:1Þ
The solution in the x-direction is done for all j, which gives us the temporary spline coefficients cmðyjÞ, m ¼ �1; ::;Nx and
j ¼ �2; . . . ;Ny þ 1. The coefficients corresponding to m ¼ �2 and m ¼ Nx þ 1 are deduced from (3.4) applied for i ¼ �1 and
i ¼ Nx.

In the same way, the solution in the y-direction is done for all m ¼ �2; . . . ;Nx þ 1, and gives the coefficients gm;b for
b ¼ �1; . . . ;Ny þ 1; the boundary values gm;�2 and gm;Nyþ1 are obtained from (3.4)

The target processor has to gather all points needed to compose the matrix (4.1). To that purpose, as the values of the
distribution function are known at ðxi; yjÞ for i ¼ 0; . . . ;Nx � 1 and j ¼ 0; . . . ;Ny � 1, the local ghost zone needs to receive from
others processors

– f ð�1; jÞ for j ¼ 0; . . . ;Ny � 1,
– f ði;�1Þ for i ¼ 0; . . . ;Nx � 1,
– f ðNx : Nx þ 1; jÞ for j ¼ 0; . . . ;Ny � 1,
– f ði;Ny : Ny þ 1Þ for i ¼ 0; . . . ;Nx � 1,
– f ð�1;�1Þ,
– f ð�1;Ny : Ny þ 1Þ,
– f ðNx : Nx þ 1;�1Þ,
– f ðNx : Nx þ 1;Ny : Ny þ 1Þ,
– some weighted summations of 10 points which are computed on the neighboring processors to evaluate all derivatives.

5. Numerical simulations

In this section, some numerical results are described to demonstrate the accuracy and efficiency of our method. Espe-
cially, we should emphasize the scalability of the method comparing sequential and parallel simulations and testing it on
various problems that occur in plasma physics: the Landau damping and the two-stream instability test cases in two dimen-
sions of the phase space. We then extend the scheme to the four-dimensional phase space that consists of two spatial direc-
tions x, y and their velocity directions vx, vy. A subsection is devoted to performance analysis and comparison with the
previous approach.

5.1. Two-dimensional phase space test cases

In order to highlight the numerical features of the methods, we shall first consider simple cases in two-dimensional phase
space composed of space x and velocity vx. We numerically solve the Vlasov equation
@f
@t
þ vx

@f
@x
þ Exðt; xÞ

@f
@vx
¼ 0; ð5:1Þ
coupled with the one-dimensional Poisson equation
@Ex

@x
¼
Z

R

f ðt; x;vxÞdvx � 1: ð5:2Þ
We use a cartesian mesh to represent the x� vx phase space with the computational domain ðx;vxÞ 2 ½0; L� � ½�vmax; vmax�,
where L is the spatial length and vmax is the cutoff velocity. The number of mesh points used in the x and vx directions is
designated by Nx and Nv , respectively.

5.1.1. Linear Landau damping
The first example is the linear Landau damping (see [11,12,26,27]). The initial condition associated to the scaled Vlasov–

Poisson Eqs. (5.1) and (5.2) has the following form



Fig. 1

Fig. 2.
Nx ¼ Nv
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f0ðx; vxÞ ¼
1ffiffiffiffiffiffiffi
2p
p expð�v2

x=2Þð1þ a cosðkxÞÞ; ðx;vxÞ 2 ½0; L� � R; ð5:3Þ
where k is the wave number and a ¼ 0:001 is the amplitude of the perturbation. We choose vmax ¼ 6, L ¼ 2p=k and the fol-
lowing numerical parameters: Nx ¼ 64, Nv ¼ 64. The boundary conditions for the distribution function are periodic in the
space variable and vanishing in the velocity direction. The final time is T ¼ 60x�1

p , with xp the plasma frequency.
In this test, we are interested in the evolution of the square root of the electric energy approximated by
EhðtÞ ¼
X

i

ðExÞ2i ðtÞDx

 !1=2

; ð5:4Þ
where Dx is the space step. According to Landau’s theory, the amplitude of EhðtÞ is expected to be exponentially decreasing.
On Fig. 1, we represent the evolution of logðEhðtÞÞ in the parallel case, for two different values of the wave number: k ¼ 0:3

and k ¼ 0:5. The phase space domain is decomposed into 4 patches of the same size 32� 32 points, so that the global domain
involves 64� 64 points; moreover, Hermite boundary conditions are imposed at the boundary of each patch using the
approximation (3.16). We observe that EhðtÞ is exponentially decreasing, and the damping rate becomes larger when k in-
creases, as predicted by the Landau theory. The numerical damping rates are c ¼ 0:0127 for k ¼ 0:3, and c ¼ 0:154 for
k ¼ 0:5, which are very similar to the predicted values available in the literature (see [2,11,22]).
. Electric energy as a function of time for the linear Landau damping in the parallel case, with Nx ¼ Nv ¼ 64 points: (a) k ¼ 0:3 and (b) k ¼ 0:5.

Electric energy as a function of time for the strong Landau damping. Comparison between the sequential and the parallel case. k ¼ 0:5 and
¼ 128. An almost ‘‘exact” solution (512� 1024 points) is plotted for comparison.
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5.1.2. Strong Landau damping
When the initial amplitude in (5.3) of the perturbation increases, it turns into strong Landau damping which has been

computed by many authors [5,11,12,23,25–27]. The initial condition, given by (5.3) considers here a ¼ 0:5, k ¼ 0:5. Moreover
vmax ¼ 6:5, and the number of cells will be equal to Nx ¼ Nv ¼ 128.

We are also interested in the evolution of logðEhðtÞÞ (where EhðtÞ is given by (5.4)) as a function of time. The linear theory
of the previous test can not be applied in this case since the nonlinear effects have to be taken into account.

On Fig. 2, we compare the evolution of the logarithm of the electric energy between the sequential case and the parallel
case. We notice that the amplitude of the electric energy is first exponentially decreasing in time, and oscillates around a
constant for larger times for the two simulations. Moreover, the electric energy reaches its minimum at t � 15x�1

p . It grows
exponentially until t � 40x�1

p and then saturates. We then remark that even until large times, the two curves (associated to
the sequential and the parallel cases) are very similar, and only at t ’ 50x�1

p , they become slightly different. As in the linear
case, the sequential and the parallel case present quite good results compared to results available in the literature.

Fig. 3 shows the time development of the spatially integrated distribution function FðvxÞ as a function of the velocity vx
Fig. 3.
corresp
FðvxÞ ¼
Z 2p=k

0
f ðx;vxÞdx;
in the parallel case. We observe that particles whose kinetic energy is smaller than the potential energy are trapped by elec-
trostatic waves around the phase velocity vph ¼ x=k � 2:64, where small bumps appear preceded by small holes in the re-
gion 2 < vx < 2:5 until t � 25x�1

p . These numerical results are in very good agreement with those obtained by [12,26].
Moreover, to emphasize the influence of the approximation of the derivative on the results, we plot on Fig. 4 the evolution

in time of the total relative mass. Comparisons between the parallel and sequential case are presented in two different con-
texts; on Fig. 4(a), all the derivatives are approximated through the following fourth order finite differences operator
s0ðxiÞ ’
�f ðxi�2Þ þ 8f ðxi�1Þ � 8f ðxiþ1Þ þ f ðxiþ2Þ

12h
; ð5:5Þ
Time development of the spatially integrated distribution function for the strong Landau damping. Parallel case. Nx ¼ Nv ¼ 128. The figures
ond to t ¼ 5;15;25;35;45;60x�1

p .
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where h is the step corresponding to the derivative direction. On Fig. 4(b), the derivatives are replaced by the formula (3.16).
We can observe that the finite differences approximation (5.5) is not well suited for the parallel implementation since the
total mass presents some important oscillations from t ’ 20x�1

p , these fluctuations becoming greater when time increases.
On the contrary, the use of cubic spline derivative approximation with 21 points leads to a mass conservation which is very
similar to the mass conservation occuring in the sequential case. The use of higher order finite differences operators does not
improve the results since they converge towards a different value from that given by the derivative computed using cubic
splines approximation. Let us remark that the use of finite differences or cubic spline approximation does not affect the mass
conservation in the sequential case.

5.1.3. Two-stream instability
We consider the symmetric two-stream instability with the following initial condition
Fig. 4.
(a) four
f ð0; x;vxÞ ¼
1ffiffiffiffiffiffiffi
2p
p v2

x expð�v2
x=2Þð1þ a cosðkxÞÞ; ðx;vÞ 2 ½0;2p=k� � R;
where a ¼ 0:05, k ¼ 0:5, and vmax ¼ 9. The number of mesh points is Nx ¼ 128 in space and Nv ¼ 128 in velocity to get a good
accuracy. The final time is T ¼ 500x�1

p . For more details on this test, we refer the reader to [2,3,8,12,26].
Fig. 5 show the time development of the distribution function in phase space, in the parallel case (4 patches equally

decompose the phase space domain). From time t ’ 10x�1
p to t ’ 20x�1

p , the instability grows rapidly and a hole structure
appears. After t ’ 20x�1

p , the trapped particles oscillate in the electrostatic potential and the vortex rotates periodically.
These remarks are in good agreement with the results available in [2,12,26].

Moreover, the inherent precision of the cubic spline interpolation allows to follow thin filaments developed by the solu-
tion; even if the methodology which enables the parallelization is slightly different from the sequential version, we observe
that the parallelization does not affect the precision due to the spline interpolation.

5.2. Four-dimensional phase space test cases

In this section, we extend the scheme to the four-dimensional phase space. Several tests applied to physical configura-
tions have been implemented. The semi-Lagrangian method presented in Section 2 is used in the different situations we will
encounter in the sequel, together with the local spline interpolation. A cartesian grid represents the phase space with the
computational domain ðx; y;vx;vyÞ 2 ½0; Lx� � ½0; Ly� � ½�vmax;vmax�2. The number of mesh points is always designated by Nx

for the two-dimensional space direction, and Nv for the two-dimensional velocity direction.

5.2.1. Two-dimensional Landau damping
This first test corresponds to the numerical solution of the four-dimensional Vlasov–Poisson equation
@f
@t
þ v � rxf þ Eðt;xÞ � rvf ¼ 0; ð5:6Þ
with x ¼ ðx; yÞ and v ¼ ðvx;vyÞ, and where the electric field Eðt;xÞ solves the two-dimensional Poisson equation
rx � E ¼
Z

R2
f ðt;x;vÞdv � 1: ð5:7Þ
Comparison between the sequential and parallel case for the total relative mass conservation as a function of time, for the strong Landau damping:
th order finite differences approximation (5.5) and (b) cubic spline approximation with 21 points (3.16).



Fig. 5. Time evolution of the distribution function f in the phase space, with Nx ¼ Nv ¼ 128 in the parallel case (four processors are used), for the two-
stream instability test. The figures correspond to t ¼ 0;10;16;20;26;30x�1

p .
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The associated initial condition is set to
f0ðx; y;vx;vyÞ ¼
1

2p
exp �

v2
x þ v2

y

2

 !
ð1þ a cosðkxxÞ cosðkyyÞÞ; ð5:8Þ
with a ¼ 0:05 for the linear configuration whereas a ¼ 0:5 is considered for the strong Landau damping. The velocity space is
truncated to vmax ¼ 6, the wave numbers are kx ¼ ky ¼ 0:5, and the length of the periodic box in the physical space is
Lx ¼ Ly ¼ 4p. Finally, the four-dimensional grid contains Nx ¼ 322 points for the spatial direction and Nv ¼ 1282 points for
the velocity direction; from a parallel performance point of view, we impose a restriction on the time step: the displacements
in a direction have to be smaller than the cell size corresponding to this direction. In this test, this CFL type condition de-
pends only on the x� y displacement since the amplitude of the electric field (and consequently of the displacements in
the vx and vy directions) is not very important; then the time step must satisfy the following CFL condition: Dt < Dx=vmax.

The numerical simulation of Landau damping test cases in the four-dimensional phase space is quite difficult since the
number of grid points is strongly limited by computer memory; hence, examples of simulations are not frequent in the lit-
erature (see [12,26]). Indeed, it requires the use of high order schemes and of parallel computations.

On the one hand, we plot on Fig. 6 the time evolution of the electric energy EðtÞ
EðtÞ ¼
X

i;j

ðExÞ2i;j þ ðEyÞ2i;j
� �" #1=2

;

as a function of time obtained by the semi-Lagrangian method using local cubic spline interpolation, in the linear context.
We can observe the exponential decay of the amplitude of EðtÞwith c ¼ 0:4 (damping rate of the oscillations) and x ¼ 1:676
(frequency of the oscillations) which is in a good agreement with the theoritical values c ¼ �0:394 and x ¼ 1:682.



Fig. 6. Time evolution of the electric energy for the linear Landau damping solving the four-dimensional Vlasov–Poisson equation. kx ¼ ky ¼ 0:5, Nx ¼ 322,
Nv ¼ 1282 and eight processors are used.
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On the other hand, for the nonlinear case plotted on Fig. 7, we recover a damping coefficient which is in a good agreement
with [12], and we also notice that the amplitude of the electric energy is oscillating around a constant for large times (as in
[12]). This test has been performed using Nx ¼ 322 points in spatial direction and Nv ¼ 1282 in the velocity direction. The
two-dimensional velocity space is decomposed into eight subdomains (i.e. eight processors). We can observe on Fig. 8 that
the method inherits the accuracy of the cubic splines interpolation; indeed, the Lp norms has a reasonable behaviour and the
total energy presents small oscillations, the amplitude of which does not exceed a few percents.

5.2.2. Beam focusing problems
We now consider the evolution of a RMS matched Gaussian beam in a focusing channel. In this case, an appropriate model

is the paraxial model which can be derived from the six-dimensional Vlasov equation (see [9,13]). This model is much sim-
pler than the full Vlasov–Maxwell system since it includes only four dimensions; it can be written, for all x ¼ ðx; yÞ and
v ¼ ðvx;vyÞ
Fig. 7.
Nx ¼ 32
@f
@t
þ v � rxf þ ðEself ðt; xÞ þ Eapplðt; xÞ þ ðv;vbÞT � Bapplðt;x; zÞÞ � rvf ¼ 0; ð5:9Þ
where Eself is the self-consistent electric field given by the Poisson equation, vb is the propagating velocity of the beam along
the z-axis and Eappl (resp. Bappl) is an external electric (resp. magnetic) field to focalize the beam.

Then, we intend to solve the four-dimensional model (5.9). For the external forces, three different types are mostly con-
sidered in accelerators for modeling purposes: uniform focusing by a continuous field, periodic focusing and alternating
Time evolution of the electric energy for the nonlinear Landau damping solving the four-dimensional Vlasov–Poisson equation. kx ¼ ky ¼ 0:5,
2, Nv ¼ 1282 and eight processors are used.



Fig. 8. Time evolution of the Lp norms (p ¼ 1;2) and of the total energy for the nonlinear Landau damping solving the four-dimensional Vlasov–Poisson
equation. kx ¼ ky ¼ 0:5, Nx ¼ 322, Nv ¼ 1282 and eight processors are used.
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gradient focusing. In this section, we consider an alternating gradient focusing configuration, taking into account a Gaussian
initial condition of the form
Fig. 9.
associa
f0ðx; y;vx;vyÞ ¼
1

ð2pÞ2
exp �

x2 þ y2 þ v2
x þ v2

y

2

 !
: ð5:10Þ
Many papers have been devoted to focusing beam problems, but essentially using PIC codes; we mention here some works
where simulations are performed using Vlasov simulations [13,28,29].

We present a beam of ionized potassium particles focused with an alternating gradient method: the applied electric field
is given by
Eappðt;xÞ ¼
þk0ðtÞx
�k0ðtÞy

� �
;

where for t 2 ½0; T�; T ¼ 1m, k0ðtÞ is positive, null and negative. The initial condition is a Gaussian distribution function and
the physical parameters are the following: the current I is 40 mA, the energy of the beam is equal to 1 MeV, and the emit-
tance is 50p mm mrad.

For the numerical parameters, we choose vmax ¼ 32, Lx ¼ Ly ¼ ½�6;6�, and Nx ¼ Nv ¼ 128. The time step is equal to
dt ¼ 4:64� 10�4, whereas the simulations are performed on two periods.

We present the evolution of the RMS quantities of the Gaussian beam; in Fig. 9, we also plot the RMS quantities of the
equivalent KV beam for comparison. As expected, the RMS quantities of the Gaussian beam are not exactly periodic, but they
remain close to the ones corresponding to the periodic KV beam (it is especially the case for the xrms quantity for example).
 0.98
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Time evolution of the Xrms quantity obtained from the numerical solution of the paraxial model, with a alternating gradient electric field, and its
ted KV beam.
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Moreover, on Figs. 10 and 11, we plotted the snapshots of the projection onto the x� vx and the y� vy planes of the dis-
tribution function. We can observe that, as for the KV beam, the axial phase space is not elliptical because the beam is
matched to nonlinear forces. The beam is focused in one direction and defocused in the other.

5.3. Performance analysis

We comment in this section the execution times of the code. In Fig. 12, we present some speedup results relative to the
2D case. The experiments were conducted on two parallel computers: a cluster (the IBM machine belongs to the M3PEC
group, Bordeaux 1 University) of 16 IBM nodes (16-way Power5 processors at 1.9 Ghz), and a shared memory SGI machine
(located at Montpellier, France, at the computing center CINES) of 512 processors (Origin 3800 with 500 Mhz processors).
The results are quite good since they are super-linear due to so-called cache effects. Let us remark that the diagnostics
are not taken into account in these results. Moreover, the experiments dictate the fact that a minimum number of points
has to be considered (for small patches, the overhead in computations to estimate the derivatives becomes too large).

In Fig. 13 some speedup results relative to the 4D case for two parallel machines are presented, up to a large number of
processors. As expected regarding the 2D results, the results are good. The communication–computation overlap that has
been implemented along with cache effects enables us to get very satisfying speedup results.

Moreover, on Table 2, we present the performances of the LOSS code (in its 4D version) towards the SLV2D code (see [7]).
In this latter code, a similar semi-Lagrangian method using cubic splines interpolation is used; but a global transposition
between the space advection and the velocity one is performed, which involves a huge amount of communication when
Fig. 10. Time evolution of x� vx projection of the distribution function: (a) t ¼ 0, (b) t ¼ T=4, (c) t ¼ T=2, (d) t ¼ 3T=4, (e) t ¼ T , (f) t ¼ 5T=4, (g) t ¼ 3T=2, (h)
t ¼ 7T=4, (i) t ¼ 2T , with T ¼ 0:05931.



Fig. 11. Time evolution of y� vy projection of the distribution function: (a) t ¼ 0, (b) t ¼ T , (d) t ¼ 3T=4, (e) t ¼ T , (f) t ¼ 5T=4, (g) t ¼ 3T=2, (h) t ¼ 7T=4, (i)
t ¼ 2T , with T ¼ 0:05931.
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Fig. 12. Speedup for the two-stream instability on a shared memory SGI machine and on a cluster of 16 IBM nodes. The results corresponds to 512� 512
points in the phase space; the simulation is stopped after 300 iterations.
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Fig. 13. Speedup for the four-dimensional case on a shared memory SGI machine and on a cluster of 16 IBM nodes. The results corresponds to
512� 512� 32� 32 points in the phase space; the simulation is stopped after eight iterations.

Table 2
Computation time for one time step in the four-dimensional case for SLV2D and LOSS on a grid5000 machine with a 2564 domain and 32 nodes (128
processors).

SLV2D LOSS4D

Time transpose/comm. (s) 41.0 13.9
Time (in s) v advection 4.0 2.2
Time (in s) x advection 4.0 4.2
Time (in s) field solver 0.9 0.5
Time (in s) total 49.9 20.8

N. Crouseilles et al. / Journal of Computational Physics 228 (2009) 1429–1446 1445
the number of processors becomes important. Thus, the two codes have almost the same algorithmic complexity, the main
difference lies in the communication pattern. Let us mention that the LOSS code is able to combine the MPI and OpenMP
programming models (see [24]) to exploit levels of parallelism at a very fine grain. Hence, one can use a larger number of
processors.

Let P be the number of processors. Also, let be TH the number of threads used in the LOSS code (induced by OpenMP par-
allelization). Moreover, we define by Nv (resp. Nx) the total number of points in the velocity (resp. spatial) direction and we
assume that Nvx ¼ Nvy so that

ffiffiffiffiffiffi
Nv
p

¼ Nvx ¼ Nvy . At each time step of SLV2D, the whole 4D distribution function is sent twice
on the machine network. During the transposition of an advection, each processor has to send (respectively received) around
Cslv ¼ ðd

ffiffiffiffiffiffi
Nv
p

=Pe
ffiffiffiffiffiffi
Nv
p

ÞNx floating-point values. For the LOSS code, only exchange of boundary values of the patches are per-
formed between logically adjacent processors. Let pm be the perimeter of one patch taken in the vx � vy directions. The num-
ber of floating-point values sent (respectively, received) during an advection for one processor is Closs ¼ ð3pm=THÞNx. For
typical big runs, we suppose that TH 	 s4 and pm ¼ 128 (for patches of size 32� 32); thus, the inequality 3pm=H < 128
is always satisfied. In such configurations, for all test cases involving more than 1284 grid points, we have
ðd

ffiffiffiffiffiffi
Nv
p

=Pe
ffiffiffiffiffiffi
Nv
p

Þ 	 128. Then, it induces that Closs < Cslv , so that the LOSS code save communications compared to SLV2D.
We show performance results for a test case of 2564 points in the phase space using 128 processors. This kind of test can

not be performed using a smaller number of processors due to memory limitation. On the machine we used, each node of
four processors hosts 4GB of RAM memory. During one run, the LOSS code takes 3.4GB per node, whereas the SLV2D code
takes 2.4GB. In Table 2, we focus on the execution time for one typical time step. The transposition/communication step is
three times longer for the SLV2D code than for the LOSS code. Furthermore, the advection step in v is faster with the LOSS
code because of cache effects. Hence, the patches are considered one after the other, and each patch of 32� 32 points fit into
the cache. It induces temporal locality leading to fast access to memory. With this example, we want to show that the LOSS
code get shorter execution times than the SLV2D code on quite big test cases.

6. Conclusion

In this paper, we introduced a local semi-Lagrangian method which has been applied to simulate four-dimensional Vlasov
type equations. The methodology presents a good behaviour when it is tested on plasma or beam configurations, even when
the number of processors is important. Hence, an important number of points can be taken into account to well describe the
distribution function. This kind of method is interesting in order to benchmark numerical results obtained by PIC codes. For



1446 N. Crouseilles et al. / Journal of Computational Physics 228 (2009) 1429–1446
example, the method has been implemented with success in the GYSELA code [18], which enables massively parallel gyroki-
netic simulations. This kind of decomposition is also feasible using 3 or 4 dimensional patches so that a larger number of
dimensions can be parallelized. It should become conceivable to solve six-dimensional problems on today’s supercomputers.
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